How To Prepare For Your Viva

I’ve finally finished! After years of reading papers, designing algorithms, hacking at code, and writing papers, my PhD is complete.

One of the most daunting thoughts I had as a PhD student was the idea of the viva: two experts sit in a room and pick apart the fine details of your work. They ask deep and technical questions, not limited merely to your thesis content, for a few hours (I’ve heard horror stories of 8 hours!) before sending you out of the room to discuss your fate. Fifteen minutes of palpitations later you get your result and (whatever the outcome) head to the pub, either to celebrate or drown your sorrows as appropriate.

In reality, because I was well prepared, my viva was actually just a chat with some knowledgeable people who were very interested in my work. There were a few curveball questions, nothing too serious, and the whole thing was done in an hour.

Here are some of my top tips for viva preparation.

thesis_pic.png The finished product!

Continue reading “How To Prepare For Your Viva”

Advertisements

Modern Directions for Matrix Analysis and Applications

Every two years the IMA organize a conference on the interface between numerical linear algebra and optimization. For me, this was the perfect place to organize my first minisymposium entitled ‘Modern Directions for Matrix Analysis and Applications‘ with Natasa Strabic. We managed to get some great speakers talking about their ideas for future research. I’ve summarised some of their main ideas here and you can find my presentation on SlideShare.

minisymposium.JPG Left to Right: Me, Amal Khabou, Ben Jeuris, Federico Poloni, Natasa Strabic, Roel Van Beeumen. Photo: Mario Berljafa.

Continue reading “Modern Directions for Matrix Analysis and Applications”

5 Tips For Starting Responsive Web Design

According to recent analysis by ComScore the number of mobile users will surpass the number of desktop users this year. This means it is becoming vital that your website is smartphone friendly.

I’ve recently redesigned my website to make it easy to use on desktops, tablets, and smartphones by using responsive web design (RWD): the website layout changes depending on your screen size. In this post I’m going to share a few of the tips I found helpful.

ManMathsSite-Resp.png

Responsive webite for the Manchester University Maths Dept. Left: Desktop. Right: Mobile.

Continue reading “5 Tips For Starting Responsive Web Design”

Overview of the NA-HPC Workshop at UCL, April 2014

The NA-HPC Network

The NA-HPC Network is one of the groups funded by EPSRC Network Grants tasked with supporting the interaction and collaboration between numerical analysts, computer scientists, developers, and users of HPC systems within the UK.

Run by Nick Higham and David Silvester at Manchester the network has run a number of events over its 3 year lifespan. This post contains my highlights of the recent meeting at UCL, details of which can be found here.

Continue reading “Overview of the NA-HPC Workshop at UCL, April 2014”

Software Carpentry – The Highlights

The Software Sustainability Institute, Mathworks, and the Software Carpentry group recently collaborated to run a course at Manchester University. The event was designed to teach best practices in software engineering to young researchers and mainly focused on three points:

  • the command line and shell scripting (mainly in Bash).
  • version control, and in particular Git.
  • data manipulation, unit testing, and performance considerations in MATLAB.

In this post I’ll highlight what I took away from the course and give links to some useful information.

Continue reading “Software Carpentry – The Highlights”

Using implicit matrices in Python

There are lots of new features in SciPy 0.13 (release notes) but for me the most important are the updated matrix functions in scipy.linalg and the one norm estimator in scipy.sparse.linalg.

In some of my recent research (related to section 4 of this) I’ve needed to estimate the one norm of a large (n^4 x n^2) dense matrix without computing each element. All we can assume is the ability to compute matrix-vector products (via some rather complicated function), meaning we only know the entries of the matrix implicitly.

Continue reading “Using implicit matrices in Python”